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Abstract 

Considering a wave function 4' for a massless particle, transforming according to an 
arbitrary irreducible representation (IR) of the homogeneous Lorentz group, we deter- 
mine the basic conditions for 4' to be an eigenfunction with a specified value ;~ of the 
helicity in all Lorentz frames. The method used is direct and elementary, requiring no 
knowledge of the IR's of the Poincar6 group. It is shown that there exists no invariant 
heticity state in unitary representations of the Lorentz group, and one such state in any 
non-unitary representation (with one extra in special cases). 

1. Introduction 

I t  is a wel l -known fact tha t  in the group theoretical  classification of  
e lementary  particles according to Wigner  (1939) and  Ba rgmann  & Wigner  
(1948), massless particles are associated with irreducible representat ions 
( IR 's )  o f  the Poincar6 group (PG) characterised by a vanishing value of  
p z  _=_ p~p~, and a definite (integral or  ha l f  integral) value of  the helicity A. 
The  helicity for  p2  __ 0, may  be defined through the relat ion (Bargmann & 
Wigner,  1948) W" = AP" where {W"} = ( J . P ,  p o j  _ p x K). Here  J and 
K are the generators  of  ro ta t ions  and boosts  and the P "  are the t ranslat ion 
generators.  The  presence of  only a single helicity in the massless case is in 
contras t  with the case of  massive particles where it is the spin s which 
(along with the squared mass) labels at', IR ,  and  all helicity values s, s - l ,  
. . . .  - s  are necessarily present.  Nevertheless,  in describing massless particles 
it is not  cus tomary  to use single componen t  wave functions t ransforming  
according to the Wigner  I R ' s  (with their compl ica ted m o m e n t u m  depen- 
dence);  instead, one uses mul t i componen t  wave functions t ransforming 

:~ Present Address: Department of Physics, St. Thomas College, Kozhencherry, 
Kerala, India. 
Copyright �9 1972 Plenum Publishing Company Limited. No part of this publication may be reproduced, 
stored in a retnevaI system, or transmitted, m any form or by any means, electronic, mechanical, photo- 
copying, microfilming, recording or otherwise, without written permission of Plenum Publishing Company 
Limited. 

399 



400 M.T.  SIMON, M. SEETHARAMAN AND P. M. MATHEWS 

according to irreducible representationst of the homogeneous Lorentz 
group (HLG) generated by d and K. In doing so, one automatically 
introduces several values of the helicity. One question which arises 
immediately is whether these helicity values are all invariant, i.e. whether 
the description in terms of locally covariant wave functions is equivalent 
to the use of a direct sum of Wigner IR's  corresponding to all the helicities 
involved. The earliest work of relevance to this question seems to be that 
of Hammer & Good (1957). In connection with a proposed wave equation 
for massless particles they showed by explicit evaluation of the helicity s 
part of a wave function transforming according to D(O,s), that it remains 
a helicity s eigenstate in all inertial frames. Later it was emphasised by 
Shaw (1965) that the representation of the PG in the space of D(0,s)-type 
wave functions is reducible but indecomposable: the effect of  a Lorentz 
transibrmation on a state of given helicity ;~ is to convert it into a super- 
position of states with helicity >~ ;~. The only helicity state left invariant is 
then that with A = s, in agreement with the result of Hammer & Good (1957). 

One of our objectives in this paper is to generalise this result to any 
IR of the HLG. The basic conditions for a locally covariant wave function 
to have a definite value of helicity in all Lorentz frames will be derived 
below by a direct and elementary method. It follows trivially therefrom 
that in any finite dimensional IR, D(m,n),  the only invariant helicity is 

= n - m. Our work complements that of Weinberg (1964) and Frishman 
& Itzykson (1969) who have proved the converse result, namely that from 
entities transforming according to the Wigner IR belonging to a specified 
helicity ~, one can construct only such locally covariant fields as have the 
transformation property D(m, m + )t), m being arbitrary. Unlike in their 
work, we do not need to invoke any knowledge of the Wigner IR's. In the 
case of  unitary IR 's  of the HLG,  we show that the formal result of Frishman 
& Itzykson (1969) namely that there are invariant helicity states with 
;~ = +J0, is essentially an empty statement because, as we prove below, no 
such state is normalisable. In any non-unitary IR, there is one invariant 
helicity state in general, and two in certain special cases. 

2. The Invariant Helicity State 

Consider a wave function which, at some physical space-time point, is 
given by ~b(x) and ~b'(x ')=A(L)r in different frames related by the 
Lorentz transformation L. The A(L)  constitute a representation of the 
HLG, which is taken to be irreducible. We now pose our problem as 

I" The IR's of the HLG are identified by the notation (./0, e) where the Iabels are defined 
in terms of the eigenvalues jo 2 + c 2 - 1 and i]o c of the Casimir operators j2 _ K ~ and 
J.K respectively. (J0 = non-negative integer or half-integer, c = any complex number.) 
In the case of finite dimensional (non-unitary) IR's, an alternative and more convenient 
notation is D(m,n), with m and n defined through M 2 --+ m(m + 1) and N 2 ~ n(n + 1), 
where M = �89 + iK) and N = �89 iK). Unitary IR's are infinite dimensional and 
belong to either the principal series (e = pure imaginary) or the supplementary series 
(jo = 0,0~c~< 1). 
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follows: I f  ~b(x) represents a state which has definite momen tum p and 
helicity A in one reference frame, so that  

(J  .p) $(x) = ~p~(x) (2.1) 

under  what  condit ions will the equation 

(J .  p') ~b'(x') = ),I/~b'(x') (2.2) 

be valid in every other  reference, frame, p' being the momen tum of  the 
state in the new frame ? Since rotat ions do not  affect the helicity, what  we 
have to worry  about  is the compatibil i ty of  (2.1) and (2.2) when an arbi t rary 
boost  is involved, i.e. 

~b'(x') -- e ' ~ ' ~  ~b(x) (2.3) 

/3 = t a n h a  being the velocity and fi the direction of  the boost.  Equat ion 
(2.2) may  then be rewritten as 

[e-~* '~(a .  p') e '~"'~] ~b(x) = / / p '  ~b(x) (2.4) 

The  opera tor  in square brackets can be evaluated with the aid of  the 
formula  

Y+ Ix, Y] + ~ [ x ,  [x, r ] ]+  ... (2.5) e x y e - X  ~ 
. r  

The  commuta tors  involved in the present case are all expressible in terms 
of  two basic ones: 

[ - i K .  fi, J] = i(fi • iK), [ - iK . f i ,  iK] = i(fi x J) (2.6) 

which in turn may be deduced from the algebra o f  the Lorentz  generators. 
One finds then that  

e - t ~ ' K a e  *~n'K = J c o s h ~  + i(fi x iK) sinh~ - (J . f i ) f i (cosha  - 1) (2.7) 

Combining this with the explicit expression for the t ransformed momentum 
p' in terms of  p namely 

p' = p + (ft. p) fi(cosh ~ - 1) - tip sinh 0~ (2.8) 

one finally obtains the condit ion (2.4) as 

[ (a .p)  cosh~  + i(fi x iK) .p  sinh a - (a . f i )p  sinh ~]~b(x) 

= A[p cosh a - (~ .p) sinh ~] ~b(x) (2.9) 

To  see the impor t  of  this equat ion it is convenient  to choose the direction 
of  p to be the z-axis, when (2.9) simplifies to 

[J3(cosh cz - n3 sinh ~) - nl(Yl q- t(2) sinh ~z - F / z ( J  2 - -  K1) sinh a] ~b(x) 

= A [ c o s h ~ -  n~ sinh0~]~b(x) (2.10) 



402 M . T .  SIMON, M. SEETHARAMAN AND P. M. MATHEWS 

We recall that this is nothing but equation (2.2) re-expressed in terms of 
quantities in the original reference frame. Its compatibility with equation 
(2.1), which now takes the form 

4 4 , = a 4 ,  
requires evidently that 

(J, +/(2) 4, = 0 and 

or equivalently, 
M_ 4, = 0 and 

(& - ~ , )  4, = o 

N~ 4 ,=0  

( 2 . 1 t a )  

(2.11b) 

where M_ and N+ are ladder operators for M ~_ �89 + iK) and N -~ �89 - iK). 
The conditions (2.11) for a particular helicity eigenstate to be Lorentz 

invariant are precisely the ones obtained by far more elaborate methods 
starting from the Wigner IR's (Weinberg, 1964; Frishman & Itzykson, 
1969). Determining the state singled out by (2.11) is now an almost trivial 
matter. In the case of a finite dimensional IR, D(m,n), the commuting 
angalar momentum like operators M and N operate in independent spaces, 
and (2.1 lb) then requires 

M 3 4, = -m4, and 

Since J3 = M3 + N3 it follows that 

N3 4, = n4, (2.12) 

(2.13) 

This argument cannot be applied to unitary representations, which are 
necessarily infinite dimensional and do not have M and N as independent 
operators, for the hermiticity of J and K implies that M = N t. However this 
relation, and in particular its consequence: 

( M y  = N~, (2.14) 

can now be exploited. We write each of the Casimir operators of the HLG, 
j2 _ K 2 and a .K,  in two alternative forms: 

32 --  K 2 = (J3 2 - K3 2) @ 2(M+ M_ + N_ N+ - iK3) (2.15a) 

= ( J 3 2 - K 3 2 ) + 2 ( M - M + + N ~ N _ + i K 3 )  (2.15b) 
and 

J.  K -= - i ( M +  M_ - N_ N+ - J3)  ~- J3 K3 (2.1 6a) 

.= - i ( M _ M +  - N+N_ +J3) +-/3/'23 (2,16b) 

It follows then that for a state 4, transforming locally like (jo, c) and 
satisfying equations (2,11), 

( s  + c 2 _ 1) (4,, 4,) = (4,, ( a  2 - X 2) 4,) 

= (4,, [A 2 - -  ](32 - -  2 iK31  4,) (2 .  l Va)  

= (4,, [z2 _ &2 + 2ix3] 4,) (2.17 b) 
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and 
ijo c(~, ,/,) - (t~, [i)t + 2K3] ~b) (2.18a) 

-- @, [-iA + )~K3] 4) (2.18b) 

The hermiticity relation (2.14) has been used in arriving at (2.17b) and 
(2.18b) with the aid of  (2.15b) and (2.16b). F rom equations (2.17) we 
immediately deduce that  

@, K3 ~b) = 0 (2.19a) 
and from equations (2.18), 

(~b,)t~b) = 0 or ~ = 0 (2.19b) 

Thus in a unitary representation, no helicity eigenstate with • r O can be 
invariant. The necessary conditions for invariance can be sharpened by 
feeding equations (2.19) back into (2.17) and (2.18). We obtain 

(j02 + c 2 - 1) (4, 4') = - @ ,  K3 z ~b) < 0 (2.20a) 
and 

(/o c(~b, St,) - 0 (2.20b) 

It is evident that the only unitary IR's  in which these conditions can be met 
are the IR's  (0,c) of  the principal series~. (c pure-imaginary) or of  the 
supplementary series (c real, 0 ~< c -~- 1). 

There still remains the question whether in a given IR (0, e) there exists a 
(normalizable) state ~b satisfying the constraints (2.11). To find an answer to 
this question it is necessary to expand ~b in terms of  basis statesfjo which are 
simultaneous eigenstates of  j2  and J3 and whose behaviour  under  Lorentz  
t ransformat ions is known (Naimark,  t964; Fr ishman & Itzykson,  1969). 
The latter may  be expressed, in a form which is most  convenient  for  our  
purposes,  as follows: 

2 M •  - - •  ia~[(j~: cr)(j q: cr + 1)]l/2fj_l y •  

+ (1 + ib j ) [ ( j :~  cr)(j-t: ~ +  1)]1/2fj,o• 

-=. iaj ~ [(j • ~ + 1) ( j  ! ~ + 2)]1/2fj+ l,o+_~ (2.21a) 

2m3fjc~ iaj[j  z __211/2F = - u  j j j - 1 , o + ( l + i b j ) ~ f j ~  

+ iaj+ 1[(J + 1)2 _ c~2]l/2fj+a .~ (2.21 b) 
with 

[ ( . J2 - -JoZ) ( j22c2)] l /2  __ iJoC 
aj = 1_ jz(4j2 - 1) , bj J ( F  1) (2.22) 

The effect of  N• N3 o n f j o  are given by equations (2.21) with a), aj+l~ bj 
replaced by their negatives. 

The IR (1,0) would also be allowed if one could have the equality sign in (2.20a), 
i.e./s ~ = 0, but it can be shown that this equation, taken together with (2.11), would 

force ~b to vanish identically. 
26 
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In employing these properties in our problem, we note that ~b can be 
written as 

~b = E h(j)f~o (2.23) 
J 

since the helicity has to be necessarily zero according to (2.19). Further, the 
coefficient b j vanishes in our case. It may be easily verified that on account 
of this, the recurrence relations for the h(j) arising from the substitution of 
(2.23) in the two equations (2. l lb),  namely M_~/J=0 and N ~ b = 0 ,  
coincide. We obtain thus a single three-term recurrence formula 

a j h ( j -  i) - ih(j) - aj+ ~h( j+ l) --- 0 (2.24) 

Though one cannot obtain a simple solution for h(j) from (2.24) it is not 
difficult to deduce its asymptotic behaviour as j--+ oo, which is all that 
matters as far as the normalisability of (J is concerned. First, by dividing 
throughout by h(j)  one converts (2.24) into a recurrence relation for the 
ratio h ( j ) / h ( j - 1 ) .  Substitution of the assumed asymptotic form 
A 4. ~/j + C/j z + "" for this ratio together with similar asymptotic forms 
obtained from (2.22) for the a j, leads then to the result that for largej  

h(j) A 
ih ( j  1) 1-]--z-t . . . .  , A=�89 (2.25) 

- -  J 

Now, it is known (Bromwich, 1959) that as j--> ~ the sequence ]h(j)[ 
diverges if Re.A > 0  and has a vanishing limit if Re.A <0 .  Further if 
Y~j lh(j)12 is to converge, one must have Re. A < --}. It follows therefore that 
the sequence h(j) does not converge in any IR belonging to the principal 
series (Re. c = 0). As far as IR's in the supplementary series are concerned, 
for �89 < c < 1 one can find solutions ~b with h(j) --+ 0 (as j -+ oa) by taking 
A = � 8 9  e. However, even for these, the norm (~b,~b) = ~ ]h(j)[ z is infinite. 
Therefore no physically meaningful invariant helicity states exist when ~b 
transforms according to any unitary IR of the HLG. 

Finally we observe that if ~ transforming according to any general IR of  
the HLG is con sidered, without insisting on unitarity or finite dimensionality, 
then one has the following as necessary conditions for invariant helicity: 

A(K 3 + i) ~b = zj0 c~b (2.268) 

(X3 + i)z~b = ()~2 _j0z _ c 2) ~b (2.26b) 

These are obtained by operating on ~b with ,l. K and ,1 z - K 2 in the forms 
(2.16a) and (2.15a), and using equations (2. !1). Equations (2.26) in turn 
imply, for any k g: 0, that 

(k2 __j0 2) (,~2 --  C 2) = O (2.27) 

Actual determination of the state r is again done with the aid of a resolution 
of ~b similar to (2.23) : 

~b = E h(j).~a, /~ = "Jo or ec (2.28) 
J 
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where e = J : l .  Appl icat ion of  equat ions (2.11), leads to two recurrence 
relat ions which can be solved to obtain (for) t  r 0), 

ih(j)  _ [(2j + 1) (ja _ ~2) ( j _ j o  e/A)2] l/z 
h(f-Z] ) ~_ ~jL_-l~Z~_~j~o2 ~ -] (2.29a) 

[ ,  j o c ~ l  + ' "  for  j>> I (2.29b) . ,  

Therefore  h( j )diverges  a s j  -+ co unless Re.  [�89 - (J0 e/)~)] is negative. Sincethe 
series in (2.28) could hardly  be meaningful  if the sequenee h(j)  does not  at  
least have a finite limit, we conclude that  a state of  invar iant  helicity ~ -r 0 
canno t  occur  in I R ' s  other than  those with either 

or 

J0 = eZ(= �89 , 2 . . . .  ) and Re.  (Ec) > �89 (2.30a) 

c = • ,  A - j 0  integer, J0 1 3 = = , ~ , 2 , . . .  (2.30b) 

It  should be noted tha t  equat ions (2.30) fix not  only the magni tude  but  also 
the sign of  the invariant  helicity in any IR.  In part icular ,  the non-uni ta ry  
I R ' s  (1,1) and (1 , -1 )  considered in the l i terature (Bender, 1968 ; F r i shman  
& I tzykson,  1969) in connect ion with the radia t ion gauge t rea tment  of  the 
e lectromagnet ic  potentials ,  can a c c o m m o d a t e  only the helicities +1 and - 1  
respectively.~ 

One last r emark  regarding the case ,~ = 0 which was excluded in the above  
discussion: by (2.26a) one has to have joe  also vanishing and it can be 
verified then that  the constraints  on r reduce to the recurrence relat ion 
(2.24) on the coefficients h(j) .  An analysis similar to that  following equat ion 
(2.24) can then be carried through,  and the final results turn out  to be special 
cases of  equat ions (2.30). 
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